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1 Introduction

The manual shall provide a guide line for new users of OpenPhase and phase-field simu-
lation in general, and it provides the basic definitions which are needed to understand
the basics of the multi-phase field method, get acquainted with the basic conventions in
the module package and provide a reference for users and programmers. Section (2.1)
will provide the theoretical basis OpenPhase is grounded on. Section (??) will define
the most important parameters and conventions of the code. Section (??) describes
how to construct and compile an executable for an individuals simulation. Section (??)
describes introductory example simulations.
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2 Phase-field models

2.1 Theoretical background

2.1.1 Traveling wave solution for the double obstacle potential

The Free Energy functional using a double obstacle potential is defined as

F dual =
∫

Ω
dxfdual (2.1)

fdual = 1
2ε|∇φ|

2 + 1
2γDO(φ) + h(φ)∆g (2.2)

DO =

φ(1− φ)(φ) for 0 ≤ φ ≤ 1

∞ else

h(φ) is a coupling function between 0 and 1 monotonous in φ in the range between 0
and 1 chosen in order to ensure a traveling wave solution (see below).

h(φ) = 1
π

[(4φ− 2)
√
φ(1− φ) + arcsin(2φ− 1)] (2.3)

∂

∂φ
h(φ) = 8

π

√
φ(1− φ) (2.4)

The phase-field equation is derived

τ φ̇ = − δ

δφ
F dual

= (∇ ∂

∂∇φ
− ∂

∂φ
)fdual

= ε∇2φ+ γ(φ− 1
2) + 8

π

√
φ(1− φ)∆g (2.5)

The solution of 2.5 in 1D along the x axis, where the phase φ = 1 is arbitrarily positioned
in the left, is

2



2. Phase-field models 3

φ(x, t) =


1 for x < vnt− η

2
1
2 −

1
2sin(π

η
(x− vnt)) for vnt− η

2 ≤ x < vnt+ η
2

0 for x ≥ vnt+ η
2

(2.6)

with the velocity vn of the wave traveling in positive x direction as defined below. The
spacial derivatives normal to the front are:

∂

∂x
φ = −π

η

√
φ(1− φ) (2.7)

∂2

∂x2φ = π2

η2 (1
2 − φ) (2.8)

We prove this solution by inserting (2.8) into the 1D version of (2.5)

τ φ̇ = εDO
∂2

∂x2φ+ γ(φ− 1
2) + 8

π

√
φ(1− φ)∆g (2.9)

= ε
π2

η2 (1
2 − φ) + γ(φ− 1

2) + 8
π

√
φ(1− φ)∆g (2.10)

= [επ
2

η2 − γ](1
2 − φ) + 8

π

√
φ(1− φ)∆g (2.11)

A steady state solution is found for ∆g = 0, i.e. equilibrium between the phases

0 = [επ
2

η2 − γ](1
2 − φ) (2.12)

= [επ
2

η2 − γ] (2.13)

η =
√
επ2

γ
(2.14)

This shows that the ratio between ε and γ determines the interface width. The velocity
vn of the traveling wave solution (2.6) can be related to the model parameters τ ,η and
m:

φ̇ = ẋ
∂

∂x
φ = vn

∂

∂x
φ = −vn

π

η

√
φ(1− φ) (2.15)

Here we have transformed φ̇ into a coordinate system traveling with velocity vn and
used the first spacial derivative of the traveling wave solution (2.7). In 1D the interface
contribution proportional to ε and γ cancel, as shown above, and the phase field equation
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(2.5) becomes

τ φ̇ = ε
∂2

∂x2φ+ γ(φ− 1
2) + 8

π

√
φ(1− φ)∆g = 8

π

√
φ(1− φ)∆g (2.16)

By comparison of (2.15) and (2.16) we find the velocity

vn = − 8η
π2τ

∆g (2.17)

The sign means, that if the phase φ = 1, which is placed on the left, is thermodynamically
favorable, i.e. ∆g < 0, the velocity is positif and the interface is traveling to the right,
which means growth of phase φ = 1.
It shall be noted that the coupling function h(φ) is constructed such that ∂

∂φ
h(φ) = ∂

∂x
φ

and therefore the profile of the traveling wave is independent of φ and x. There
is, however, no generalization of such a solution in junctions between more than 2
phase-fields (see below).
The interface energy σ[ J

cm2 ] is

σ =
∫ ∞
−∞

dx[ ε2(∇φ)2 + γ

2φ(1− φ)]

=
∫ ∞
−∞

dx[ ε2
π2

η2 + γ

2 ]φ(1− φ)

=
∫ ∞
−∞

dxγφ(1− φ) (2.18)

In the last equation the result (2.12) was used. To solve the integral we substitute dx
by dφ dx

dφ

σ =
∫ 1

0
dφ
dx

dφ
γφ(1− φ)

= γ
η

π

∫ 1

0
dφ
√
φ(1− φ)

= γη

8 = επ2

8η (2.19)

Finally we fix the time scale comparing the traveling wave equation (2.17) to the Gibbs
Tomson equation with the interface mobility µ

vn = µ∆G = mη

πτ
= 8∆Gη

π2τ

µ = 8η
π2τ

(2.20)

The relations between the model parameters τ , ε and γ and the physical parameters µ,
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σ and η can be summarized:

ε = 8ση
π2 , γ = 8σ

η
, τ = 8η

π2µ
(2.21)

In the physical units the free energy density and phase field equation read:

f = 4σ
η

[(η
π
∇φ)2 + φ(1− φ)]− h(φ)∆g (2.22)

φ̇ = µ
[
σ(∇2φ+ π2

η2 (φ− 1
2)) +

π
√
φ(1− φ)
η

∆g
]

(2.23)

2.1.2 The multi-phase-field model

We start out from a general free energy description separating different physical phe-
nomena, interfacial f intf , chemical f chem. Later we will compare the multi-phase model
to the 2 phase model from the last sections in the case that only 2 phases are present.

F =
∫

Ω
f intf + f chem (2.24)

other contributions like elastic, magnetic and electric energy will be added later.

f intf =
∑

α,β=1..N,α>β

4σαβ
η

{
−η

2

π2∇φα · ∇φβ + φαφβ

}
(2.25)

where we have set the interface width η equal for all pairs of phases.

f chem =
∑

α=1..N
φαfα(ciα) + µ̃i(ci −

∑
α=1..N

φαc
i
α) (2.26)

We use the sum convention over double indices of the components i. N = N(x) is the
local number of phases and we have the sum constraint

∑
α=1..N

φα = 1 (2.27)

σαβ is the energy of the interface between phase – or grain – α and β. It may be
anisotropic with respect to the relative orientation between the phases. ηαβ is the
interface width that will be treated equal for all interfaces in the following. The
chemical free energy is built from the bulk free energies of the individual phases fα(~cα)
which depend on the phase concentrations ciα. µ̃i is the generalized chemical potential
or diffusion potential of component i introduced as a Lagrange multiplier to conserve
the mass balance between the phases ci = ∑

α=1..N φαc
i
α.

For N = 2, α = 1, β = 2 we check for consistency
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f intf−dual = 4σ12

η

{
−η

2

π2∇φα · ∇φβ + φαφβ

}

= 4σ12

η

{
η2

π2 (∇φα)2 + φα(1− φα)
}

(2.28)

which is identical to (2.22) with φβ = 1− φα in the dual case. The chemical free energy
in the multi-phase case uses the identity h(φ) = φ for the coupling function

f chem−dual = φαfα(ciα) + φβfβ(ciβ) + µ̃i(ci − φαciα − φβciβ)

= φα(fα(ciα)− fβ(ciβ)− µ̃i(ciα − ciβ) + fβ(ciβ)) + µ̃i(ci − ciβ)

= φα∆gdualαβ + f0(ci) (2.29)

∆gdualαβ = fα(ciα)− fβ(ciβ)− µ̃i(ciα − ciβ) (2.30)

∆gdualαβ is the equivalent to ∆g in (2.22) under the assumption that the phase compositions
ciα obey a parallel tangent construction with the same chemical potential µ̃i. f0(ci) is
an offset independent of φ.
The multi-phase-field equations are derived

φ̇α = −
∑

β=1..N

π2

4ηN µαβ( δF
δφα
− δF

δφβ
) (2.31)

µαβ is defined individually for each pair of phases. Inserting the free energy (2.24) to
(2.31) we calculate explicitly

φ̇α =
∑

β=1..N

µαβ
N

[{
σαβ(Iα − Iβ) +

∑
γ=1..N,γ 6=α,γ 6=β

(σβγ − σαγ)Iγ
}

+π2

4η∆gαβ
]

(2.32)

Iα = ∇2φα + π2

η2 φα (2.33)

∆gαβ = fα(ciα)− fβ(ciβ)− µ̃i(ciα − ciβ) (2.34)

Again we compare the model for consistency with the dual phase model. For N = 2 we
have:
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φ̇1 = −π
2

8ηµ12( δF
δφ1
− δF

δφ2
)

= µ12

2 {[σ12(I1 − I2) + π2

4η∆g12}

= µ12{[σ12(∇2φ1 + π2

η2
φ1 − φ2

2 ) + π2

8η∆g12}

= µ12{[σ12(∇2φ1 + π2

η2 (φ1 −
1
2) + π2

8η∆g12} (2.35)

φ̇2 = −φ̇1 (2.36)

The interface contribution is identical to (2.22), the non equilibrium part, however,
violates the traveling wave solution as the identity for the coupling function is used for
thermodynamic consistency. We may check that the integral of the rate change of φ is
the same in both cases (taking µ12 = µ and ∆g12 = ∆g

∫ 1

0
dφ
π
√
φ(1− φ)
η

∆g = π∆g
η

∫ 1

0
dφ
√
φ(1− φ) = π2∆g

8η (2.37)∫ 1

0
dx
π2

8η∆g12 = π2∆g
8η (2.38)

This shows, that for practical use in a phase-field simulation we may approximate in
dual interfaces

∆g ≈ π

8
√
φ(1− φ)∆g (2.39)

Resigning from full thermodynamic consistency we will use in the following the approx-
imation

φ̇α =
∑

β=1..N

µαβ
N

{[
σαβ(Iα − Iβ) +

∑
γ=1..N,γ 6=α,γ 6=β

(σβγ − σαγ)Iγ
]

+2π
η

√
φ(1− φ)∆gαβ

}
(2.40)



3 Modules

OpenPhase provides a set of additional solvers for all types of partial differential
equations.

8



3. Modules 9

3.1 Settings

What it does Reads and stores the most general calculation informations, mostly given
in the input file.

Header File Settings.h

Requires Nothing

Input file ProjectInput.opi1

Examples /examples/HeatEquationSolver, ...

Module in brief...

Input parameters and input file The settings module reads in the calculation
parameters from an input file, typically ProjectInput/ProjectInput.opi. The following
list provides an explanation of the required input parameters. Mandatory entries are
underlined.

$Nx, $Ny, $Nz Sets the number of grid points in the x, y and z direction, respectively.
The minimum dimension size is one, the maximum is typically limited by the
amount of memory. Can be accessed via Settings.Nx.

$nSteps Number of time steps. Accessible via Settings.nSteps. The use of this parameter
can be convenient in a typical simulation setup such as

1 for ( int tStep = 0 ; tStep < Se t t i n g s . nSteps ; tStep++)
2 {
3 // increment opera t i ons
4 }

$FTime, $FDisk Sets parameters useful for the amount of data output to disk and
screen. They can be accessed via the variables Settings.tFileWrite and Set-
tings.tScreenWrite. Usefully, the

1 i f ( ! ( tStep%Se t t i n g s . tF i l eWr i t e ) )
2 {
3 PhaseFie ld .WriteVTK( tStep ) ;
4 }

1All following input file names in the ’Module in brief’ boxes can be altered by the user.
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Constructor

Initialize (...)

ReadInput(Settings.opi)

Figure 3.1: Call graph for module Settings

$dx Sets the distance between two calculation points of the regular grid. Note, that
this value is the same for all spacial directions. Can be accessed via Settings.dx.

$IWidth Definition of the interface with in grid points which is stored as Settings.eta.
Note that the small strain elasto-plastic framework of OpenPhase also works in
the sharp interface limit, i.e. Settings.eta = 0.

$dt Sets the initial time step. Can be accessed via Settings.dt. Note that some modules
might use an internal time stepping scheme.

$nOMP Sets the maximum number of used threads for parallelization with OpenMPI
[1]. The domain is then splitted along the x-axis, which should be considered
when non-cubic computation grids are created. In addition, some initializations
are specifically optimized for this domain decomposition.

$nPhses Sets the number of thermodynamic phases (but not the number of grains/phase-
fields) and can be accessed via Settings.nPhases. Typically, material parameters
have to be given for Settings.nPhases in further input files such as ElasticProper-
ties.opi.
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3.2 BoundaryConditions

What it does Sets boundary conditions for scalar and vectorial calculation variables.

Requires Settings

Header file BoundaryConditions.h

Input file BoundaryConditions.opi

Examples /examples/HeatEquationSolver

Module in brief...

Boundary Conditions can be set individually for every side in the boundary condition
input file (typically BoundaryConditions.opi) which is read by ReadInput() . The
keywords $BC0X , $BCNX , $BC0Y , $BCNY , $BC0Z and $BCNZ define the
six individual sides of the calculation domain, see Listing 3.1

1 $BC0X X ax i s beg inning boundary cond i t i on : Pe r i od i c
2 $BCNX X ax i s f a r end boundary cond i t i on : Pe r i od i c
3
4 $BC0Y Y ax i s beg inning boundary cond i t i on : NoFlux
5 $BCNY Y ax i s f a r end boundary cond i t i on : NoFlux
6
7 $BC0Z Z ax i s beg inn ing boundary cond i t i on : Pe r i od i c
8 $BCNZ Z ax i s f a r end boundary cond i t i on : Pe r i od i c

Listing 3.1: Example of BoundaryConditions.opi input file for BoundaryConditions

The available types for a scalar or vectorial variable ξ

Periodic ξ1 = ξN

Free ξ1, ξN

NoFlux (∇ξ1)n = (∇ξN)n = 0

Fixed ξ1, ξN

Internally, a boundary condition object containing the boundary definitions is passed
to the indivual modules, such as Temperature or PhaseField.
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Constructor

Initialize (...)

ReadInput(BoundaryConditions.opi)

Figure 3.2: Call graph for module BoundaryConditions

Constructor

Initialize (...)

Figure 3.3: Call graph for module PhaseField

3.3 PhaseField

What it does Stores and manages phase-fields.

Requires Settings, BoundaryConditions

Header File PhaseField.h

Input file Several important parameters are given in the main input file ProjectInput.opi

Examples

Module in brief...
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Constructor

Initialize (...)

Figure 3.4: Call graph for module InterfaceField

3.4 InterfaceField

What it does Calculates the pairwise phase-field interactions

Requires Settings, BoundaryConditions

Input file None

Examples benchmarks/SingleGrain

Module in brief...
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Constructor

Initialize (...)

Figure 3.5: Call graph for module InterfaceEnergy

3.5 InterfaceEnergy

What it does Calculates the interfacial energy

Requires Settings, BoundaryConditions

Header file InterfaceEnergy.h

Input file None

Examples benchmarks/SingleGrain

Module in brief...



3. Modules 15

Constructor

Initialize (...)

Figure 3.6: Call graph for module InterfaceMobility

3.6 InterfaceMobility

What it does Calculates the interfacial mobility

Requires Settings, BoundaryConditions

Header file InterfaceMobility.h

Input file None

Examples benchmarks/SingleGrain

Module in brief...
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constructor

Initialize()

Figure 3.7: In and output for module Velocities

3.7 Velocities

What it does Stores velocity field of phases and calculates average.

Requires Settings, PhaseField, BoundaryConditions

Header file Velocities.h

Input file None

Examples /examples/LDPlasticity, ...

Module in brief...

Background and usage The main purpose of the Velocities module is the storage
of a velocity field, here called V(i, j, k)
The temperature field can be read and write to disk using Write(int tStep) and
Read(tStep). VTK output can be generated via WriteAverageVTK(int tStep) for the
phase averaged quantity.
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3.8 Orientations

What it does Reads, outputs and stores local and global, absolute and incremental
rotation informations. Provides methods to calculate Euler angles.

Requires Settings

Header File Orientations.h

Input file Orientations.opi

Examples /benchmarks/EshelbyTestWithPlasticity, ...

Module in brief...

Purpose and structure The Orientations module is intended to store local and
global orientations, provide output routines and manages the calculation from rotation
matrices to Euler angles or quaternions. This class is required

• if rotated grains should be considered in a calculation using elasticity. In this case,
an orientations object has to be passed to functions ElasticProperties .SetGrainsProperties()
, ElasticityModule.SetEffectiveEigenstrains () and ElasticityModule.SetEffectiveElasticConstants()
.

• if plasticity should be used.

This class is not required

• if Eigenstrain and stiffness tensors are given in a rotated representation in the
input file.

• if no elasticity is used. Still, grain orientations can be set (see below) which allow
anisotropic phase-field and diffusion calculation. FIXED CONVENTION USED!

The local orientation of a material point is stored as a 3x3 rotation matrix, that rotates
lattice properties from the fixed origin x-y-z coordinate system into the local one2.
Three different contributions are considered

R(x) = RglobRgrainRelastic(x)

Here, Rglob a global rotation matrix that is applied to each material point with the same
magnitude. It can be given in the input-file (see below) or changed throughout the calcu-
lation. Furthermore, Rgrain is the grain rotation with respect to the reference frame ro-

2The rotation from of a point in a fixed coordinate system is called ’active’
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tated by Rglob. In opposite to Rglob and Relastic, Rgrain is stored as a phase-field parame-
ter and can be accessed via PhaseField.FieldsStatistics[alpha].Orientation (returns an object
of type Angles) and changed via PhaseField.FieldsStatistics[alpha].Orientation[GrainIndex].set(Q1,
Q2, Q3, ’Con1’, ’Con2’, ’Con3’). The latter three parameters (see description below).
The calculation and integration of Relastic, is described in SpectralElasticSolver.

Rn̂(α) =


n2

1 (1− cosα) + cosα n1n2 (1− cosα)− n3 sinα n1n3 (1− cosα) + n2 sinα
n2n1 (1− cosα) + n3 sinα n2

2 (1− cosα) + cosα n2n3 (1− cosα)− n1 sinα
n3n1 (1− cosα)− n2 sinα n3n2 (1− cosα) + n1 sinα n2

3 (1− cosα) + cosα


Input parameters and input file The orientations module reads in the calculation
parameters from an input file, typically ProjectInput/Orientations.opi. The following
list provides an explanation of the required input parameters. Mandatory entries are
underlined. Note: All input angles have to be given in radian.

$rotationflag If option ’Yes’ is chosen, the rotations stemming from the deformation
field - calculated in SpectralElasticSolver - are integrated. Otherwise, the storage
Orientations.Rotations will store

Rt+1 = Rt =


1 0 0
0 1 0
0 0 1


throughout the calculation.

$globalconvention The conversion from Euler angles to rotation matrices requires the
definition of the . The following purely intrinsic rotations are allowed: XYX,
XYZ, XZX, XZY, YXY, YXZ, YZX, YZY, ZXY, ZXZ, ZYX, ZYZ. Note: Two
succeeding rotations around the same axis can inherently not lead to all possible
orientation states. In addition, the following purely rotations are allowed: xyx,
xyz, xzx, xzy, yxy, yxz, yzx, yzy, zxy, zxz, zyx, zyz.

$globalQ1, $globalQ2, $globalQ3 This set of angles will set the global rotation matrix
Rglob.

X1Z2X3 =


c2 −c3s2 s2s3

c1s2 c1c2c3 − s1s3 −c3s1 − c1c2s3

s1s2 c1s3 + c2c3s1 c1c3 − c2s1s3



X1Z2Y3 =


c2c3 −s2 c2s3

s1s3 + c1c3s2 c1c2 c1s2s3 − c3s1

c3s1s2 − c1s3 c2s1 c1c3 + s1s2s3


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X1Y2X3 =


c2 s2s3 c3s2

s1s2 c1c3 − c2s1s3 −c1s3 − c2c3s1

−c1s2 c3s1 + c1c2s3 c1c2c3 − s1s3



X1Y2Z3 =


c2c3 −c2s3 s2

c1s3 + c3s1s2 c1c3 − s1s2s3 −c2s1

s1s3 − c1c3s2 c3s1 + c1s2s3 c1c2



Y1X2Y3 =


c1c3 − c2s1s3 s1s2 c1s3 + c2c3s1

s2s3 c2 −c3s2

−c3s1 − c1c2s3 c1s2 c1c2c3 − s1s3



Y1X2Z3 =


c1c3 + s1s2s3 c3s1s2 − c1s3 c2s1

c2s3 c2c3 −s2

c1s2s3 − c3s1 s1s3 + c1c3s2 c1c2



Y1Z2Y3 =


c1c2c3 − s1s3 −c1s2 c3s1 + c1c2s3

c3s2 c2 s2s3

−c1s3 − c2c3s1 s1s2 c1c3 − c2s1s3



Y1Z2X3 =


c1c2 s1s3 − c1c3s2 c3s1 + c1s2s3

s2 c2c3 −c2s3

−c2s1 c1s3 + c3s1s2 c1c3 − s1s2s3



Z1Y2Z3 =


c1c2c3 − s1s3 −c3s1 − c1c2s3 c1s2

c1s3 + c2c3s1 c1c3 − c2s1s3 s1s2

−c3s2 s2s3 c2



Z1Y2X3 =


c1c2 c1s2s3 − c3s1 s1s3 + c1c3s2

c2s1 c1c3 + s1s2s3 c3s1s2 − c1s3

−s2 c2s3 c2c3



Z1X2Z3 =


c1c3 − c2s1s3 −c1s3 − c2c3s1 s1s2

c3s1 + c1c2s3 c1c2c3 − s1s3 −c1s2

s2s3 c3s2 c2



Z1X2Y3 =


c1c3 − s1s2s3 −c2s1 c1s3 + c3s1s2

c3s1 + c1s2s3 c1c2 s1s3 − c1c3s2

−c2s3 s2 c2c3


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Constructor

Initialize (...)

ReadInput(Orientations.opi)

SetGrainsProperties(PhaseField)

Figure 3.8: Call graph for module Orientations

3.9 ElasticProperties

What it does Defines and manages storages for mechanical calculation

Requires Settings

Header file Mechanics/Storages/ElasticProperties.h

Input file ElasticityInput.opi

Examples /benchmarks/EshelbyTest /examples/LD-J2Plasticity

Module in brief...

Input parameters and input file Several parameters can be defined in the input
file for the ElasticProperties module and read via ReadInput() . An example is given
in Listing 3.2.

0 - Pressure relaxation mode This boundary condition is only supported in Spec-
tralElasticSolver and SpectralElastoPlasticSolver.

1 - Applied strain mode This boundary condition is supported by all solvers.

2 - Applied stress mode This boundary condition is supported by all solvers.

3 - Mixed stress strain mode This boundary condition is supported by SpectralElas-
ticSolverBS and SpectralElasticSolverAL.
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1 $MechState Mechanical State : 1
2
3 $g lobor i entat i on_1 Global o r i e n t a t i o n 1 : 0 . 0
4 $g lobor i entat i on_2 Global o r i e n t a t i o n 2 : 0 . 0
5 $g lobor i entat i on_3 Global o r i e n t a t i o n 3 : 0 . 0
6
7 $Comp_0 Component name : NN
8
9 $CREF_NN_0 Reference concent ra t i on : 0
10
11 $Phase 0
12 $C11 280 e9 0
13 $C22 280 e9 0
14 $C33 280 e9 0
15 $C12 120 e9 0
16 $C13 120 e9 0
17 $C23 120 e9 0
18 $C44 80 e9 0
19 $C55 80 e9 0
20 $C66 80 e9 0
21
22 $E1 0 0
23 $E2 0 0
24 $E3 0 0
25 $E4 0 0
26 $E5 0 0
27 $E6 0 0

Listing 3.2: Example of ElasticProperties.opi input file for ElasticProperties

Constructor

Initialize (...)

ReadInput(ElasticProperties.opi)

SetGrainsProperties(PhaseField)

Figure 3.9: Call graph for module ElasticProperties
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Constructor

SetEffectiveElasticConstants(ElasticProperties )

SetEffectiveEigenStrains(ElasticProperties )

Figure 3.10: Call graph for module ElasticityReuss

3.10 ElasticityReuss

What it does Calculates homogenized elastic properties in the interface; calculates
elastic driving force.

Requires Settings, ElasticProperties

Header file Mechanics/ElasticityModels/ElasticityReuss.h

Input file None

Examples /examples/MultiComp-Elastic

Module in brief...

The EffectiveElasticConstants are calculated by calling the method SetEffectiveElasticConstants(EP)
as

C =
(∑

α

C−1
α φα

)−1

(3.1)

The EffectiveEigenStrains are calculated by calling the method SetEffectiveEigenStrains(EP)

ε∗ =
∑
α

φαε
∗
α (3.2)

The driving force ∆Gel
αβ becomes

∆Gel
αβ = 1

2ε
elC

(
C−1
α −C−1

β

)
Cεel + εelC

(
ε∗α − ε∗β

)
(3.3)

= 1
2σ (Cα −Cβ)σ − σ

(
ε∗α − ε∗β

)
(3.4)
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Constructor

SetEffectiveElasticConstants(ElasticProperties )

SetEffectiveEigenStrains(ElasticProperties )

Figure 3.11: Call graph for module ??

3.11 ElasticityKhachaturyan

What it does Calculates homogenized elastic properties in the interface; calculates
elastic driving force.

Requires Settings, ElasticProperties

Header file Mechanics/ElasticityModels/ElasticityKhachaturyan.h

Input file None

Examples /examples/MultiComp-Elastic

Module in brief...

The EffectiveElasticConstants are calculated by calling the method SetEffectiveElasticConstants(EP)
as

C =
∑
α

Cαφα (3.5)

The EffectiveEigenStrains are calculated by calling the method SetEffectiveEigenStrains(EP)

ε∗ =
∑
α

φαε
∗
α (3.6)

The driving force ∆Gel
αβ becomes

∆Gel
αβ = 1

2ε
el (Cβ −Cα) εel + εelC

(
ε∗β − ε∗α

)
(3.7)

= 1
2ε

el (Cβ −Cα) εel − σ
(
ε∗β − ε∗α

)
(3.8)
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3.12 SpectralElasticSolver

What it does Calculates the mechanical equilibrium ∇ · σ = 0.

Requires Settings, PhaseField, BoundaryConditions, ElasticProperties

Input file ElasticProperties.opi

Examples /examples/EshelbyTest

Module in brief...

Background This module implements the scheme published by Hu and Chen [2].
Starting from splitting the average strain

ε(x) = ε̄+ ε̃(x) (3.9)

with the classical engineering strain

ε(x) = 1
2
(
∇u(x) + (∇u(x))T

)
. (3.10)

Note, that this linearized strain measure with respect to the undeformed reference
configuration. However for applications where the elastic strains are small (ε < 0.1)
this assumption is valid.

C0∂
2u(x)
∂x2 = (C0ε0 − C̃(x)ε̄)∂X

∂x
+ C̃(x)ε0∂

2X

∂x2 − C̃(x) ∂
∂x

(
X
∂un−1(x)

∂x

)
(3.11)
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Constructor

Initialize (...)

Figure 3.12: Call graph for module SpectralElastoPlasticSolver

3.13 SpectralElastoPlasticSolver

What it does Calculates the mechanical equilibrium ∇ · σ = 0.

Requires Settings, PhaseField, BoundaryConditions, ElasticProperties, ??, ??

Input file ElasticProperties.opi

Examples /examples/EshelbyTest

Module in brief...

Background This module extends SpectralElasticSolver for consideration of plastic
deformations.
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3.14 SpectralElasticSolverBS

What it does Calculates the mechanical equilibrium ∇ · σ = 0.

Requires Settings, PhaseField, BoundaryConditions, ElasticProperties

Input file ElasticProperties.opi

Examples /examples/EshelbyTest

Module in brief...

Background The SpectralElasticSolverBS module represents an alternative to the
SpectralElasticSolver and the SpectralElasticSolverAL module. It implements the
scheme as described by Moulinec and Suquet [3] using an enhanced mathematical
formulation, strong phase contrast can be treated with improved convergence behavior,
see [4] for a comparison. However, the basic scheme uses, like the AL solver, a strain
related and hence can not be used in combination with the Large Deformations module.

Starting from the mechanical equilibrium,

∇ · σ(x) = 0, (3.12)

where σ = C(x) : ε is the symmetric Cauchy stress tensor using Hooke’s law assuming
a linear stress-strain relationship. The principle idea is to split the total strain ε(x)
into an homogeneous and an heterogeneous part

ε(x) = E + ε̃(x) (3.13)

where the latter one is assumed to be periodic. It follows, that the stress

σ(x) = C(x) : (E + ε̃(x)) (3.14)

If one introduces a reference stiffness3,

C0 = 1
2
(
maxφ(C̃)−minφ(C̃φ)

)
, (3.15)

with C̃ being the rotated initial stiffness tensors,
By transferring (3.13) to Fourier space, the convolution becomes a simple multiplication

3
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Constructor

Initialize (...)

SetLoad(ElasticProperties)

Solve (...)

Figure 3.13: Call graph for module SpectralElasticSolverBS

εi+1(x) = Γ ∗
(
C(x)−C0

)
εi + E (3.16)

The Green operator for anisotropic materials reads in Fourier space

Γ̂0
ijkl = −kjkl

(
C0
ijklklkj

)−1
(3.17)

Note that the choice of the reference stiffness C0 has a severe impact on the convergence
performance.

Usage The solver is called via Solve(ElasticProperties , double equilibrium, int
MAXIterations) , where equilibrium is the convergence criterium following (3.20) and
MAXIterations the maximum allowed number of iterations. Before the solver is called,
the load is internally finalized with SetLoad(ElasticProperties) . Check wether that
SetGrainsProperties (...) , SetEffectiveElasticConstants() and SetEffectiveEigen-
strains(...) of ElasticProperties and ElasticityModel have been called.
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3.15 SpectralElasticSolverAL

What it does Calculates the mechanical equilibrium ∇ · σ = 0.

Requires Settings, PhaseField, BoundaryConditions, ElasticProperties

Input file ElasticProperties.opi

Examples /examples/EshelbyTest

Module in brief...

Background The SpectralElasticSolverAL module represents an alternative to the
SpectralElasticSolver and the SpectralElasticSolverBS. It implements the scheme as
described by [5] using an enhanced mathematical formulation (augmented lagrangian
or AL), strong phase contrast can be treated with improved convergence behavior, see
[4] for a comparison. However, the AL scheme uses, like the BS solver, a strain related
and hence can not be used in combination with the Large Deformations module.

ei = ε+ (C0 + C)−1
(
λ−1 −C : ε

)
(3.18)

The Green operator for anisotropic materials reads in Fourier space

Γ̂0
ijkl = −kjkl

(
C0
ijklklkj

)−1
(3.19)

The iteration procedere is stopped, when

max
(
‖εi − ei‖
‖E‖

,
‖λi − ∂w

∂ε
(εi)‖

‖〈∂w
∂ε

(E)〉‖

)
≤ η (3.20)

Usage The solver is called via Solve(ElasticProperties , double equilibrium, int
MAXIterations) , where equilibrium is the convergence criterium following (3.20). From
our experience values of η = 10−5 or η = 10−6 yield good accuracy. MAXIterations sets
the maximum allowed number of iterations, which inherently depends severly on the
stiffness contrast of the used materials. Before the solver is called, the load is internally
finalized with SetLoad(ElasticProperties) .Check wether SetGrainsProperties (...) ,
SetEffectiveElasticConstants() and SetEffectiveEigenstrains(...) of ElasticProperties
and ElasticityModel have been called.
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Constructor

Initialize (...)

SetLoad(ElasticProperties)

Solve (...)

Figure 3.14: Call graph for module SpectralElasticSolverAL

3.16 Large Deformations

What it does Calculates the mechanics in the case of large deformations

Requires Settings, BoundaryConditions, PhaseField, ElasticProperties

Header file Mechanics/LargeDeformations/LargeDeformationsElastic.h, Mechanic-
s/LargeDeformations/LargeDeformationsElastoPlastic.h

Input file LDInput.opi

Examples /examples/LD-J2Plasticity

Module in brief...

The plasticity modules use OpenPhase’s large deformation framework following an
Eulerian approach with a fixed grid. The total deformation increment due to external
strain or changes in the eigenstrain field is evaluated and splitted to increments which
are small and can be passed to the spectral linear elastic solver. Once the BVP is
solved for the given load increment, the resulting velocity field updates the geometry
(phase-field), the stresses are integrated and the next load increment is applied.

Usage The solver is called by the single command
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1 $verbose Severe in fo rmat ion output (Yes/No) : Yes
2 $MaxSo lve r I t e ra t ions Max. num of s o l v e r i t e r a t i o n s : 200
3 $SolverPrec1 So lve r p r e c i s i o n s t r a i n : 10 .0 e−6
4 $SolverPrec2 So lve r p r e c i s i o n p r e s su r e : 100 .0
5 $MaxStrainInc Max. a l lowed s t r a i n increment : 0 .01
6 $nSubMult ip l i cator Increment reduct i on f a c t o r : 2 . 0
7 $maxRefinementNumber : 5

Listing 3.3: Example of LDInput.opi input file for LargeDeformations module

Constructor

SetEffectiveElasticConstants(ElasticProperties )

SetEffectiveEigenStrains(ElasticProperties )

Figure 3.15: Call graph for module Large Deformations

3.17 Plasticity modules

What it does

Requires Settings, PhaseField, BoundaryConditions

Input file PlasticPropertiesJ2.opi,PlasticPropertiesCPphenom.opi, etc.

Examples

Module in brief...

Structure

The plasticity functionality of OpenPhase is splitted to classes storing and managing
the corresponding storages ( PlasticProperties , PlasticPropertiesJ2 , ... ) and classes
to calculate the plastic strain ( PlasticityModel, PlasticityModelJ2, ... ). In a typical
elasto-plastic calculation the properties and the model classes have to be invoked and
are passed to the SpectralElastoPlasticSolver.
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Homogenization

Plastic strains and plastic properties (hardening parameters, dislocation densities, etc.)
are defined for each individual phase-field γ. Using

εpl
eff =

Nγ∑
γ

εpl
γ φγ (3.21)

the complete homogenization (Reuss σ = σα = σβ) becomes

εeff =
Nγ∑

γ

φγC−1
γ

σ +
Nγ∑
γ

ε∗γ︸ ︷︷ ︸
ε∗

eff

+
Nγ∑
γ

εpl
γ︸ ︷︷ ︸

εpl
eff

. (3.22)

The effective values are handed over to the spectral elastic solver.

J2 plasticity model

The J2 model represent the most simple plasticity model implemented in OpenPhase.
It is an isotropic plasticity model with linear and kinematic hardening. Yielding occurs,
if

f(σ,q) = ‖η‖ −
√

2
3(σy + θH̄α)

where
η =̂dev(σ)− β.

The stress deviator is defined as

dev(σ) = σ − 1
3trace(σ)

Furthermore, σy is the yield strength obtained by unidirectional tensile tests, θ and H̄

η =̂ dev(σ)− β

ε̇p = γ η‖η‖

α̇ = γ
√

2
3

β̇ = γ 2
3(1− θ)H̄(α) η‖η‖
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Hill plasticity model

In opposite to the J2 model, the Hill model allows an anisotropic yield surface. Currently
no hardening model is implemented for this model. Starting with

ε̇p = λ̇
∂f

∂σ

a yield surface is defined as

f = α12(σ11−σ22)2+α23(σ22−σ33)2+α31(σ33−σ11)2+6α44σ
2
12+6α55σ

2
23+6α66σ

2
31−σ̄2.

α12, α23, α31, α44, α55,α66 are the anisotropic parameters with respect to a reference
yield strenght σ̄. Briefly, one could also write

f = 3
2σ

TPσ − σ̄2

where

P =



1
3(α12 + α31) −1

3α12 −1
3α31 0 0 0

−1
3α12

1
3(α23 + α12) −1

3α23 0 0 0
−1

3α31 −1
3α23

1
3(α31 + α23) 0 0 0

0 0 0 2α44 0 0
0 0 0 0 2α55 0
0 0 0 0 0 2α66


The Hill model will fall back to the J2 model for α12 = α23 = α31 = α44 = α55 = α66 = 1.
More details can be found in [6].

Crystal plasticity model

The FCC crystal plasticity model starts from

Dpl
γ =

Ns∑
s=1

γ̇sγ
1
2
(
ms

γ ⊗ nsγ + nsγ ⊗ms
γ

)
=

Ns∑
s=1

γ̇sγPs (3.23)

Wpl
γ =

∑
s=1

γ̇sγ
1
2
(
ms

γ ⊗ nsγ − nsγ ⊗ms
γ

)
=

Ns∑
s=1

γ̇sγMs (3.24)

where
γ̇sγ : shear rate on glide system s

Dpl
γ : plastic strain rate in phase γ

Wpl
γ : plastic spin in phase γ

ms
γ : vector of the slip direction

nsγ : glide system’s normal direction
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GS n1 n2 n3 d1 d2 d3

1 −1.0 1.0 1.0 0.0 1.0 −1.0
2 −1.0 1.0 1.0 1.0 0.0 1.0
3 −1.0 1.0 1.0 1.0 1.0 0.0
4 1.0 1.0 1.0 0.0 1.0 −1.0
5 1.0 1.0 1.0 1.0 0.0 −1.0
6 1.0 1.0 1.0 1.0 −1.0 0.0
7 1.0 1.0 −1.0 0.0 1.0 1.0
8 1.0 1.0 −1.0 1.0 0.0 1.0
9 1.0 1.0 −1.0 1.0 −1.0 0.0
10 1.0 −1.0 1.0 0.0 1.0 1.0
11 1.0 −1.0 1.0 1.0 0.0 −1.0
12 1.0 −1.0 1.0 1.0 1.0 0.0

Table 3.1: Glide systems in FCC material

The phenomenological crystal plasticity model uses the following model instead

γ̇sγ = γ0

(
|σγ : Ms

γ|
τ sc,γ

)mγ
sgn

(
σγ : Ms

γ

)
, (3.25)

where
γ0 : referential shear rate

σγ : Ms
γ : resolved shear stress on glide system s

τ sc,γ : critical resolved shear stress on glide system s

mγ : hardening exponent

The evolution of the critical resolved shear stress is assumed to be

τ̇c,α = qαβh0

(
1− τβ

τs

)a
|γ̇β| (3.26)

Herein, h0 is a referential hardening parameters, τs is the saturation stress and a the
hardening exponent. Finally, qαβ is a 12× 12 matrix 1.0 for self-hardening terms and
1.4 for co-planar hardening. In FCC materials, the glide systems are defined by <111>
glide plane normals and [100] glide directions, see Table 3.1

For an dislocation based approach, the slip rate is defined as

γ̇sγ = ρsγbγv0,γ

(
|σγ : Ms

γ|
τ sc,γ

)mγ
sgn

(
σγ : Ms

γ

)
, (3.27)
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where
v0,γ : referential dislocation velocity
bγ : length of the burgers vector

σγ : Ms
γ : resolved shear stress on glide system s

τ sc,γ : critical resolved shear stress on glide system s

mγ : hardening exponent

The evolution of statistically stored dislocations (SSD) due to micro-mechanical processes
is governed by the Kocks-Mecking evolution law

ρ̇sγ =
(
c1
√
ρsγ − c2ρ

s
γ

)
|γ̇sγ| (3.28)

Integration

The velocity gradient L is returned from Fourier space as

L̃(ξ) = iξ ⊗ ũ(ξ). (3.29)

and can be decomposed additively to strain rate and spin

L = D + W = Del + Wel + Dpl + Wpl (3.30)

Following the integration scheme as introduced by [Peirce, Asaro, Needleman, Acta
metall. 1983], one gets

σn+1 = σn +
(
σ∇n+1 + Wn+1σn − σnWn+1

)
δt. (3.31)

where the Jaumann rate of Kirchhoff stress reads

σ∇n+1 = CnDn+1 −
Ns∑
s=1

Rnγ̇s − σntr(Dn+1) (3.32)

and
Rs = CPs + Wσ − σWs (3.33)

All local tensors (stiffness, eigenstrains, diffusion parameter, ...) are rotated from
the initial configuration to the current orientation by On+1. Only the elastic spin
Wel = W−Wpl rotates the crystal, hence

On+1 = exp
(
Welδt

)
On (3.34)
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where

exp
(
Welδt

)
= I +

sin
(
‖δtWel‖

)
‖Wel‖

+
1− cos

(
‖δtWel‖

)
‖Wel‖2 WelWel (3.35)
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3.18 Temperature

What it does Stores temperature field and provides several methods to control it
during the simulation.

Requires Settings, PhaseField, BoundaryConditions

Header File Temperature.h

Input file Temperature.opi

Examples /examples/HeatEquation, ...

Module in brief...

Background and usage The main purpose of the temperature module is the storage
of a temperature field, here called Tx(i, j, k), as well as the temperature gradients used
for the heat calculations. Since Tx(i, j, k) is public it can be accessed from the main.cpp
in order to declare boundary conditions manually. However, the module provides various
routines to set the temperature at the beginning or during the simulation.

SetInitial (BoundaryConditions& BC)
Sets temperature Tx(i, j, k) to constant value T0 as defined in the input file. For
dT/dx 6= 0, dT/dy 6= 0 or dT/dz 6= 0 .

Set(BoundaryConditions& BC, double dt)
Integrates the temperature by δT = dT/dtdt, where dT/dt is given in the
temperature input file.

The temperature field can be read and write to disk using Write(int tStep) and
Read(int tStep). VTK output can be generated via WriteVTK(int tStep) for tem-
perature and WriteTemperatureGradientVTK(int tStep) for gradients.
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constructor

Initialize()

ReadInput(Filename)

Figure 3.16: In and output for module Temperature

3.19 Heat

What it does Calculates the heat equation ∂u
∂t

= ∆u+ q̇

Requires Settings, PhaseField, BoundaryConditions, Temperature

Header file Heat.h

Input file Heat.opi

Examples /examples/HeatEquationSolver

Module in brief...

Background The heat module solves the heat equation

∂u(x)
∂t

= α(x)∆u(x) + q̇(x) (3.36)

where u(x) is the local temperature, q̇(x) is a heat source (or sink) and ∆ = ∑3
k=1

∂2

∂x2

is the Laplacian operator. The intergration of (3.36) using a Forward Euler scheme in
time and a central difference stencil reads

(un+1(x)− un(x))∆t−1 =
uni+1,j,k − 2uni,j,k + uni−1,j,k

(∆x)2

uni,j+1,k − 2uni,j,k + uni,j−1,k

(∆x)2

uni,j,k+1 − 2uni,j,k + uni,j,k−1

(∆x)2 + q̇(x).

(3.37)
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constructor

Initialize()

ReadInput(Filename)

Solve(Temperature)

Figure 3.17: Call graph for module Heat

The scheme is stable for
∆t < 0.25 ∗ (∆dx)2/α (3.38)

Usage Following the initialization, settings are read from ProjectInput/Heat.opi. In
every time step, the heat equation can be evaluated by Solve(Temperature) . Internally,
this method sets boundary conditions, calculates the effective thermal diffusivity as
well as the effective heat capacity, determines the Laplacian according to (3.37) and
integrates the temperature.
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3.20 Advection - High Resolution

Header file AdvectionHR/AdvectionHR.h

What it does Advects data in a Storage3D according to a given velocity field.

Requires Settings, ??, BoundaryConditions

Input file Advection.opi

Examples /benchmarks/AdvectionHR, ...

Module in brief...

Background and usage Passive fields q like temperature, concentrations and density
are advected with velocity v according to the advection equation

∂tq +∇ · (qv) = 0. (3.39)

Advection in each grid axis is handled individually as this allows for larger time steps due
to the CFL-condition. Therefore we can simplify the problem to the one-dimensional
case. A Godunov-type scheme is utilized that considers the fluxes fi+ 1

2
and fi− 1

2
over

the border of a control volume

qn+1
i = qni −

dt

dx

[
fi+ 1

2
(tn, qn)− fi− 1

2
(tn, qn)

]
, (3.40)

using the high resolution fluxes

fi+ 1
2
(t, q) = v+(xi+ 1

2
, t) [qi + φ (ri) (qi+1 − qi)] (3.41)

+ v−(xi+ 1
2
, t)

[
qi + φ

(
1
ri+1

)
(qi − qi+1)

]
, (3.42)

with v+(xi+ 1
2
, t) = max(vi+1+vi

2 , 0) and v−(xi+ 1
2
, t) = min(vi+1+vi

2 , 0) and a flux limiter
function φ. that with a proper choice allows second order accuracy in smooth regions
and counteracts oscillations near discontinuities as observed with second-order accurate
methods such as Lax-Wendroff or Beam-Warming, see [?]. The quotient ri is determined
by two consecutive slopes as

ri = qi − qi−1

qi+1 − qi
. (3.43)
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In order to avoid a division by zero when qi+1 = qi we replace the limited slopes in 3.42
with

φ(ri)(qi+1 − qi) = L(qi+1 − qi, qi − qi−1), (3.44)

φ

(
1
ri+1

)
(qi − qi+1) = −L(qi+2 − qi+1, qi+1 − qi), (3.45)

as suggested in [?]. The limiters implemented in OpenPhase are

Minmod: L(a, b) := S(a, b)min (|a| , |b|),
Monotonized Central: L(a, b) := S(a, b)min

(
|a+b|

2 , 2 |a| , 2 |b|
)
,

Superbee: L(a, b) := S(a, b)max (min (2 |a| , |b|) ,min (|a| , 2 |b|)),

with

S(a, b) := sgn(a) + sgn(b)
4 . (3.46)

In the case of L(a, b) = 0 for all a, b ∈ R the scheme becomes a simple first-order upwind
method. Finally we have

fi+ 1
2
(t, q) = v+(xi+ 1

2
, t) [qi + L(qi+1 − qi, qi − qi−1)] (3.47)

+ v−(xi+ 1
2
, t) [qi − L(qi+2 − qi+1, qi+1 − qi)] , (3.48)

fi− 1
2
(t, q) = v+(xi− 1

2
, t) [qi−1 + L(qi − qi−1, qi−1 − qi−2)] (3.49)

+ v−(xi− 1
2
, t) [qi−1 − L(qi+1 − qi, qi − qi−1)] . (3.50)

For multi-dimensional system those one dimensional-advection methods are used sub-
sequently in each direction. The Strang splitting technique, which alternates order of
execution in each time step, is second order accurate in time [?]. For n mod 2 = 0 the
schemes becomes

qn+ 1
3 = qn − dt(v1q

n)hx, (3.51)

qn+ 2
3 = qn+ 1

3 − dt(v2q
n+ 1

3 )hy , (3.52)

qn+1 = qn+ 2
3 − dt(v3q

n+ 2
3 )hz , (3.53)

qn+1+ 1
3 = qn+1 − dt(v3q

n+1)hz , (3.54)

qn+1+ 2
3 = qn+1+ 1

3 − dt(v2q
n+1+ 1

3 )hy , (3.55)

qn+2 = qn+1+ 2
3 − dt(v1q

n+1+ 2
3 )hx, (3.56)

with the velocity v = (v1, v2, v3)t and the numerical high resolution flux differences (.)hx,
(.)hy , (.)hz .
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Figure 3.18: Initial conditions for the solid body rotation test in section 3.20.1.

3.20.1 Solid body rotation test

The implementation of the advection scheme is tested with the solid body rotation
test mentioned in [?]. In the domain Ω = [0, 1] × [0, 1] we have a velocity field
v(x, y) = (0.5− y, x− 0.5)t that describes a totation around the center c = (0.5, 0.5)t.
In the domain Ω are three bodies, a slotted cylinder given by

qcyl(x, y, 0) =

1 if (|x− x0| ≥ 0.025 ∨ y ≥ 0.85) ∧ r(x, y) ≤ 1

0 else ,
(3.57)

with (x0, y0) = (0.5, 0.75) and r(x, y) = 1
r0

√
(x− x0)2 + (y − y0)2 and r0 = 0.15, a cone

at (x0, y0 = (0.5, 0.25) given by

qcone(x, y, 0) =

1− r(x, y) if r(x, y) ≤ 1

0 else ,
(3.58)

and a hump at (x0, y0) = (0.25, 0.5) determined by

qhump =

0.25(1− cos(πmin{r(x, y), 1})) if r(x, y) ≤ 1

0 else .
(3.59)

The initial conditions are q(x, y, 0) = max{qcyl(x, y, 0), qcone(x, y, 0), qhump(x, y, 0)}. The
domain Ω is discretized by a regular grid with a 128× 128 grid points and a time step
of dt = 10−3 is used. After one full rotation the solution is compared to the initial
conditions.
In table 3.2 we see that the superbee limiter generates the smallest error, while the
first-order upwind method creates the largest error. However in figure 3.22 we see
that the cone gets a bit distorted with the superbee limiter, whereas the MC-Limiter
produces a much better result as seen in figure 3.21, also the top of the hump remains
smooth. With the first-order Upwind method as well as the Minmod-Limiter we see
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Figure 3.19: Result with the upwind method.

Figure 3.20: Result of the high resolution method with the minmod limiter.

Figure 3.21: Result of the high resolution method with the MC-limiter.

Figure 3.22: Result of the high resolution method with the superbee limiter.
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Method L1 error L2 error
Upwind 0.0948 0.1798
Minmod 0.0405 0.1142
MC 0.0202 0.0768
Superbee 0.0134 0.0540

Table 3.2: Results of the solid body rotation test in section 3.20.1 with various limiters.

significant numerical diffusion in figures 3.19 and 3.20.

void Initialize (const Settings &Settings)
Standard initialize function.

void ReadInput (const std::string InputFileName)
Standard read input functions, selects the scheme via $scheme from Advection.opi.
Options are Upwind, Minmod, MC and Superbee.

void Advect (Storage3D< T, rank > &Field, const Velocities &Vel, const
BoundaryConditions &BC, const double dx, const double dt,
const int tStep)

Advects data stored in Storage3D if the type T is double , dVector3 ,
Quaternion or vStress according to the velocity field in Vel with the time step
dt and the grid width dx . In order to use the Strang splitting the number of
the timestep tStep has to be provided.

void Advect (PhaseField &Phase, const Velocities &Vel, const
BoundaryConditions &BC, const double dx, const double dt,
const int tStep)

Specialization for the Phasefield class.

void Advect (Composition &Cx, const Velocities &Vel, const BoundaryConditions
&BC, const double dx, const double dt, const int tStep)

Specialization for the Composition class.

void Advect (Temperature &Tx, const Velocities &Vel, const BoundaryConditions
&BC, const double dx, const double dt, const int tStep)

Specialization for the Temperature class.

void Advect (ElasticProperties &EP, const Velocities &Vel, const
BoundaryConditions &BC, const double dx, const double dt,
const int tStep)
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constructor

Initialize()

ReadInput(Filename)

Figure 3.23: In and output for module Advection - High Resolution

Specialization for the ElasticProperties class.

void Advect (Orientations &OR, const Velocities &Vel, const BoundaryConditions
&BC, const double dx, const double dt, const int tStep)

Specialization for the Orientations class.

void Advect (Plasticity &PL, PhaseField &Phase, const Velocities &Vel, const
BoundaryConditions &BC, const double dx, const double dt,
const int tStep)

Specialization for the Plasticity class.
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3.21 Tools

What it does Provides additional methods which are not part of the principales mod-
ules and/or required for the execution of OpenPhase

Header File Tools.h

Requires Nothing

Input file None

Examples

Module in brief...

Abaqus input file writer

Using the initialization methods of OpenPhase makes it very convenient to create repre-
sentative volume elements for Simulia Abaqus calculations. The routine can be invoked
after the initialization of the phase-field using Tools ::WriteAbaqusInput(PhaseField)
.



4 Examples and benchmarks

4.1 Grain growth/shrinkage of a spherical grain

4.1.1 Preliminaries

A spherical grain will shrink due to its curved interface in order to minimize the interface
energy. Doing so, the grain retains its sperical shape while the radius decreases with time.

From theoretical considerations, an analytic formalism can be can be found which
describes the kinetics of this shrinkage. This example simulation should reproduce this
dependence. Starting with the phase-field equation for two phases

φ̇ = µ

(
σ

(
∇2φ+ π2

2η2 (2φ− 1)
)

+ ∆G
)

(4.1)

with σ being the interfacial energy, µ the mobility parameter and ∆G any additional
driving force, For the grain boundary evolution when particle radius R � η, an
approximate theoretical time dependence of the grain radius can be obtained (∆G =
0J/m3). At time t = 0 the sphere radius is R0. In the interface of width η, the
phase-field is expressed in spherical coordinates

φ(r) = 1
2 −

1
2 sin π(r −R)

η
(4.2)

and noting that
v = −dr

dt
= φ̇

∂r

∂φ
(4.3)

one can obtain the following growth relation

R2 −R2
0 = −4σt. (4.4)

4.1.2 Modules and parameters

The benchmark uses the three mandatory modules PhaseField, BoundaryConditions and
Settings. Moreover, the modules InterfaceField, InterfaceEnergy and InterfaceMobility
are required. A spherical grain of phase 1, initial radius R0, surrounded by phase 0 is

46
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Parameter Value
Nx = Ny = Nz 65
∆x 1× 10−6m
η 5 ·∆x
µ 4× 10−9m4/(Js2)
σ 0.24J/m2

∆t 1× 10−5s
R0 Nx/3

Table 4.1: Setup parameters

considered. The grain is placed in the center of a cubic box with zero-gradient boundary
conditions. No driving force is applied.

The box size is 64x64x64 grid points. The input parameters are listed in table 4.1.

4.1.3 Results

The output data in .vts format is written in the VTK directory and can be directly
visualized using Paraview software (www.paraview.org). The R_2_graph.dat file
contains the values of the time step and the particle radius calculated analytically and
numerically. Figure ?? shows the results of R2 over timesteps for different values of η.
Obviously, a wider interface width improves result towards the analytic solution, yet at
the price of higher calculation costs. In addition, simulation with constant driving forces
∆Gαβ (Matrix α, Phase β) are performed and compared against the solution shown
above. Here, however, the solution for equation (4.1) can only be obtained numerically.
Figure 4.2 compares the solution of OpenPhase with these solutions.
As a further example, the influence of a elastic driving forces should be benchmarked.
Therefore, an eigenstrain of ε11 = ε22 = ε33 = 0.005 is defined for the inclusion. The
elastic constants for inclusion and matrix are taken equally (see Eshelby example). Free
stress boundary conditions are applied, σ̄ = 0. The results are shown in figure 4.3.
Obviously, the driving force remains constant throughout the shrinkage of the grain.
Looking at the analytic solution of the stress field as derived by Eshelby, eq. (4.5), the
maximum stress in the interface does not depend on the inclusion diameter, but only on
the eigenstrain magnitude. Consequently, the elastic driving force (3.4) has to remain
constant, as reflected by the analytical solution.

4.2 Eshelby Test

The Eshelby test benchmark is designed to validate the different mechanical solver that
come along with OpenPhase, namely the SpectralElasticSolver by Hu and Chen [2], the



4. Examples and benchmarks 48

0 2000 4000 6000 8000 10000
timesteps

50

100

150

200

250

300

350

400

450

500

R
2

3∆x

3∆x, analytic
5∆x

5∆x, analytic
10∆x

10∆x, analytic

Figure 4.1: R2 of sphere radius for different interfacial widths. Comparison with ana-
lytical solution (dashed lines).
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Figure 4.2: R2 of sphere radius for different constant driving forces ∆Gαβ. Comparison
with analytical solution (dashed lines).
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Figure 4.3: Average driving force in the interface during shrinkage of grain.

SpectralElasticSolverBS by Moulinec and Suquet [3], the SpectralElasticSolverAL by
Michel et al. [5] as well as the SpectralElasticSolverAS by Eyre and Milton (soon).
A spherical inclusion is placed inside an infiniteley expanded elastic matrix. The sphere
has an eigenstrain of ε∗11 = ε∗22 = ε∗33 = 0.01, both matrix and sphere have the same
isotropic, elastic stiffness parameters. For such a setup, Eshelby [7] derived an analytical
solution for stress and strain field, which can be used to validate the

4.2.1 Modules and parameters

The benchmark uses the three mandatory modules PhaseField, BoundaryConditions
and Settings. The aforementioned elastic solvers (SpectralElasticSolver, SpectralElastic-
SolverBS and SpectralElasticSolverAL) can be chosen by changing the preprocessor flag.
In order to perform the mechanical calculations it is necessary to load ElasticProperties
as well one of the two homogenization modules ElasticityReuss or ElasticityKhachatu-
ryan, respectively. Tables ?? and Table 4.3 summarize the most important parameters
for the Eshelby test example. Note that in the numerical setup no infinitely large
domain can be chosen.
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Key Value Comment
$nSteps 0 Single step
$Nx 129 Note: In order to obtain appropriate results,

a minimum resolution of 128 per dimension
is suggested.

$Ny 129
$Nz 129
$Nphses 2 Two phases
$IWidth 0 No diffuse interface

Table 4.2: ProjectInput.opi for Eshelby test

Key Value 1 Value 2
$Phase 0
$C11 280,000 0
$C22 280,000 0
$C33 280,000 0
$C12 120,000 0
$C13 120,000 0
$C23 120,000 0
$C44 80,000 0
$C55 80,000 0
$C66 80,000 0

Table 4.3: ElasticityInput.opi for Eshelby test

4.2.2 Results

Comparisons can be obtained against the analytical solution of Eshelby [7].

σii =


−σ0 inside the particle; x1 < rp

−σ0
(
rp
x1

)3
for i = 1;x1 > rp

1
2σ0

(
rp
x1

)3
for i 6= 1;x1 > rp

(4.5)

where
σ0 = 2

3

(
C11 + 2C12

1− 2ν
1− ν ε

∗
)

(4.6)

4.3 Crystal plasticity UMAT

The CrystalPlasticityUMAT benchmark is designed to compare the CrystalPlasticity
module of OpenPhase with results of CP codes such as DAMASK [8]. It evaluates
the stresses and hardening variables at a single continuum point for a given strain
increment. This approach is analogue to the evaluation of an integration point under
a given deformation gradient (or strain) in finite element frameworks such as Abaqus
(where the user-defined material model is described in a so called UMAT).
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Figure 4.4: Comparison of analytic Eshelby solution with results calculated by Open-
Phase.

4.3.1 Modules and Parameters

The benchmark uses the three mandatory modules PhaseField, BoundaryConditions and
Settings. In order to perform the mechanical calculations it is necessary to load Orienta-
tions, ElasticProperties as well one of the two homogenization modules ElasticityReuss
or ElasticityKhachaturyan, respectively. For the plasticity part PlasticPropertiesCP-
phenom and PlasticityModelCPphenom have to be loaded.
The benchmark sets up a one point phase field with a single phase/grain present. By
defining an applied strain ε̄ the full stress tensor

σ = C : (ε̄− εp) (4.7)

the plastic strain increment

εp = f(σ, γ̇(α=1..12), τ (α=1..12)
c ) (4.8)

(see crystal plasticity model for more details) as well as the hardening

τ (α=1..12)
c = f(σ, γ̇(α=1..12)) (4.9)

for each glide system α is calculated. Since the plasticity model is of viscous type,
parameter ∆t is a crucial input parameter. The domain size, adjusted with parameter



4. Examples and benchmarks 52

dx can be chosen arbitrarily, since the length-scale will not enter the mechanical
solution (at least for a local model). The calculation will return an error, if the
plasticity could not converge for a given ε̄. The grain orientation can be adjusted by
Orientations ::GrainEulerAngles[0].set() . For completeness, a set of important input
parameters is given in table 4.4.

Key Value Comment
$nSteps 1 Single step
$Nx 1

Note: Only a single point is evaluated.$Ny 1
$Nz 1
$Nphses 1 Single phase
$dt 1
$dx 1

Table 4.4: ProjectInput.opi for CrystalPlasticityUMAT

4.3.2 Results

All material parameters are given in mm, s, kg units.

Key Value 1 Value 2
$Phase 0
$C11 280,000 0
$C22 280,000 0
$C33 280,000 0
$C12 120,000 0
$C13 120,000 0
$C23 120,000 0
$C44 80,000 0
$C55 80,000 0
$C66 80,000 0

(a) Elasticity input for CrystalPlastic-
ityUMAT benchmark

Key Value
$explicitSolver No

$plasticityflag_0 Yes
$nonlocalflag_0 No
$gamma0_0 0.001
$tauc_0 10.0
$taus_0 117.0
$h0_0 100.0
$flowPow_0 10.0
$hardPow_0 2.25

(b) Plasticity input for Crys-
talPlasticityUMAT bench-
mark

Table 4.5: Set of material parameters used for benchmark calculation.
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